
Chapter 4

Finite State Machines

4.1 Introduction

4.1.1 Wolf-Goat-Cabbage Puzzle

A shepherd arrives at a river bank with a wolf, a goat and a cabbage. There is a
boat there that can carry them to the other bank. However, the boat can carry
the shepherd and at most one other item. The shepherd’s actions are limited
by the following constraints: if the wolf and goat are left alone, the wolf will
devour the goat, and if the goat and the cabbage are left alone, well, you can
imagine. . .

You can get a solution quickly by rejecting certain obvious possibilities. But
let us attack this problem more systematically. What is the state of affairs at
any point during the passage: what is on the left bank, what is on the right bank,
and where the boat is (we can deduce the contents of the boat by determining
which items are absent from both banks). The state of the left bank is a subset
of {w,g,c} —w for wolf, g for goat, and c for cabbage— and similarly for the
right bank. The shepherd is assumed to be with the boat (the cabbage cannot
steer the boat :-)), so the state of the boat is that it is: (1) positioned at the left
bank, (2) positioned at the right bank, (3) in transit from left to right, or (4) in
transit from right to left; let us represent these possibilities by the symbols, L,
R, LR, RL, respectively.

Thus, we represent the initial state by a triple like 〈{w,g,c}, L, {}〉. Now
what possible choices are there? The shepherd can row alone, or take one item
with him in the boat, the wolf, the goat or the cabbage. These lead to the
following states respectively.

〈{w,g,c}, LR, {}〉
〈{g,c}, LR, {}〉
〈{w,c}, LR, {}〉
〈{w,g}, LR, {}〉

71

72 CHAPTER 4. FINITE STATE MACHINES

Observe that all states except 〈{w,c}, LR, {}〉 are inadmissible, since some-
one will consume something. So, let us continue the exploration from 〈{w,c},
LR, {}〉.

When the shepherd reaches the other bank, the state changes from 〈{w,c},
LR, {}〉 to 〈{w,c}, R, {g}〉. Next, the shepherd has a choice: he can row back
with the goat to the left bank (an obviously stupid move, because he will then
be at the initial state), or he may row alone. In the first case, we get the state
〈{w,c}, RL, {}〉, and in the second case 〈{w,c}, RL, {g}〉. We may continue
exploring from each of these possibilities, adding more states to the diagram.
Figure 4.1 shows the initial parts of the exploration more succinctly.

<{w,g}, LR, {}>

w g

g

<{w,g,c}, L, {}>

<{w,g,c}, LR,{}> <{g,c}, LR, {}> <{w,c}, LR,{}>

<{w,c}, R, {g}>

<{w,c}, RL,{g}>

<{w,c}, L. {g}>

c

−−

−−

Figure 4.1: Partial State Space for the Wolf-Goat-Cabbage Problem

The important thing to note is that the number of states is finite (prove it).
So, the exploration will terminate sometime.

Exercise 27

Complete the diagram. Show that a specific kind of path in the graph corre-
sponds to a solution. How many solutions are there? Can you define states
differently to derive a smaller diagram? ✷

Remark A beautiful treatment of this puzzle appears in Dijkstra [16]. He
shows that with some systematic thinking you can practically eliminate the
state-space search. You can play the game at http://www.plastelina.net;
choose game 1. ✷

Exercise 28

Given is a 2×2 board which contains a tile in each of its cells; one is a blank tile
(denoted by —), and the others are numbered 1 through 3. A move exchanges
the blank tile with one of its neighbors, in its row or column. The tiles are
initially placed as shown in Table 4.1.

4.1. INTRODUCTION 73

1 3
2 —

Table 4.1: Easy version of Sam Loyd Puzzle; initial configuration

1 2
3 —

Table 4.2: Easy version of Sam Loyd Puzzle; final configuration

Show that it is impossible to reach the configuration (state) given in Table 4.2
from the initial state, given in Table 4.1.

Proof through enumeration: There are two possible moves from any state:
either the blank tile moves horizontally or vertically. Enumerate the states,
observe which states are reachable from which others and prove the result. It is
best to treat the system as a finite state machine.

A non-enumerative proof: From a given configuration, construct a string by
reading the numbers from left to right along the first row, dropping down to
the next row and reading from right to left. For Table 4.1, we get 132 and for
Table 4.2, we get 123. How does a move affect a string? More precisely, which
property of a string is preserved by a move?

Exercise 29

(A puzzle due to Sam Loyd) This is the same puzzle as in the previous exercise
played on a 4 × 4 board. The board contains a tile in each of its cells; one is a
blank tile (denoted by —), and the others are numbered 1 through 15. A move
exchanges the blank tile with one of its neighbors, in its row or column. The
tiles are initially placed as shown in Table 4.3.

01 02 03 04
05 06 07 08
09 10 11 12
13 15 14 —

Table 4.3: Puzzle of Sam Loyd; initial configuration

Show that a sorted configuration, as shown in Table 4.4, can not be reached
in a finite sequence of moves from the initial configuration.

You can do a computer search (calculate the search space size before you
start), or prove this result. Create a string (a permutation) of 1 through 15
from each configuration, show that each move preserves a certain property of a
permutation, that the initial configuration has the given property and the final
configurations does not. Consider the number of inversions in a permutation.

74 CHAPTER 4. FINITE STATE MACHINES

01 02 03 04
05 06 07 08
09 10 11 12
13 14 15 —

Table 4.4: Puzzle of Sam Loyd; final configuration

4.1.2 A Traffic Light

A traffic light is in one of three states, green, yellow or red. The light changes
from green to yellow to red; it cannot change from green to red, red to yellow or
yellow to green. We may depict the permissible state transitions by the diagram
shown in Figure 4.2.

g y r

Figure 4.2: State Transitions in a Traffic Light

What causes the state transitions? It is usually the passage of time; let us
say that the light changes every 30 seconds. We can imagine that an internal
clock generates a pulse every 30 seconds that causes the light to change state.
Let symbol p denote this pulse.

Suppose that an ambulance arrives along an intersecting road and remotely
sets this light red (so that it may proceeed without interference from vehicles
travelling along this road). Then, we have a new state transition, from green
to red and from yellow to red, triggered by the signal from the ambulance; call
this signal a. See Figure 4.3 for the full description.

p p

p

a

a

g y r

Figure 4.3: State Transitions in an Enhanced Traffic Light

4.1.3 A Pattern Matching Problem

You are given a list of English words, as in a dictionary. Find the words in which
the five vowels —a,e,i,o,u— are in order. These are words like “abstemious”,

4.1. INTRODUCTION 75

“facetious” and “sacrilegious”. But not “tenacious”, which contains all the
vowels but not in order.

Let us design a program to solve this problem. Our program looks at each
word in the dictionary in turn. For each word it scans it until it finds an “a”, or
fails to find it. In the latter case, it rejects the word and moves on to the next
word. In the first case, it resumes its search from the point where it found “a”
looking for “e”. This process continues until all the vowels in order are found,
or the word is rejected.

A programming hint: Sentinel How do you search for a symbol c in a
string S[0..N]? Here is the typical strategy.

i := 0;
while S[i] 6= “c” ∧ i ≤ N do

i := i + 1
od ;
if i ≤ N then “success” else “failure” fi

A simpler strategy uses a “sentinel”, an item at the end of the list which
guarantees that the search will not fail. It simplifies AND speeds up the loop.

S[N + 1] := “c”; i := 0;
while S[i] 6= “c” do

i := i + 1
od ;
if i ≤ N then “success” else “failure” fi ✷

Bonus Programming Exercise Write a program for the pattern matching
problem, and apply it to a dictionary of your choice. ✷

If you complete the program you will find that its structure is a mess. There
are five loops, each looking for one vowel. They will be nested within a loop. A
failure causes immediate exit from the corresponding loop. (Another possibility
is to employ a procedure which is passed the word, the vowel and the position
in the word where the search is to start.) Modification of this program is messy.
Suppose we are interested in words in which exactly these vowels occur in order,
so “sacrilegious” will be rejected. How will the program be modified? Suppose
we don’t care about the order, but we want all the vowels to be in the word;
so, “tenacious” will make the cut. For each of these modifications, the program
structure will change significantly.

What we are doing in all these cases is to match a pattern against a word.
The pattern could be quite complex. Think about the meaning of pattern if
you are searching a database of music, or a video for a particular scene. Here
are some more examples of “mundane” patterns that arise in text processing.

76 CHAPTER 4. FINITE STATE MACHINES

begin end while do od if then fi

106 107 100 101 102 103 104 105

Table 4.5: Translations of keywords

:= ; < ≤ = 6= > ≥ +
1000 1001 1002 1003 1004 1005 1006 1007 1008

Table 4.6: Translations of non-keywords

A longer pattern matching example Consider a language that has the
following keywords:

begin end while do od if then fi

A lexical processor for the program may have to:

1. Convert every keyword to a number, as described in Table 4.5.

2. Convert every non-keyword to a distinct 2-digit number,

3. Convert every other symbol as described in Table 4.6, and

4. Ignore comments (the stuff that appears between braces) and extra white
spaces.

Thus, a string like

while i 6= n do {silly loop} j := i + 1 od

will be converted as shown in Table 4.7.

4.2 Finite State Machine

4.2.1 What is it?

Consider the problem of checking a word for vowels in order. We can describe a
machine to do the checking as shown in Figure 4.4. The machine has six states,
each shown as a circle. Each directed edge has a label, the name of a symbol
(or set of symbols) from a specified alphabet.

while i 6= n do {silly loop} j := i + 1 od

100 10 1005 11 101 12 1000 10 1008 13 102

Table 4.7: Translation of a program

4.2. FINITE STATE MACHINE 77

The machine operates as follows. Initially, the machine is in the state to
which the “start” arrow points (the state labeled 1). It receives a stream of
symbols. Depending on the symbol and its current state the machine determines
its next state, which may be the same as the current state. Thus, in state 1, if
it receives symbol “a” it transits to state 2, and otherwise (shown by the arrow
looping back to the state) it stays in state 1. Any state shown by a double circle
is called an accepting state; the remaining states are rejecting states. In this
example, the only accepting state is 6.

start a e i o u1 2 3 4 5 6

A−{a} A−{e} A−{i} A−{o} A−{u} A

A= Alphabet

Figure 4.4: Machine to check for vowels in order

If the machine in Figure 4.4 receives the string “abstemious” then its suc-
cessive states are: 1 2 2 2 2 3 3 4 5 6 6. Since its final state is an accepting
state, we say that the string is accepted by the machine. A string that makes
the machine end up in a rejecting state is said to be rejected by the machine.

Which state does the machine end up in for the following strings: aeio,
tenacious, f, aaeeiioouu, ǫ (ǫ denotes the empty string)? Convince yourself that
the machine accepts a string iff five vowels appear in order in that string.

Convention Henceforth, if a transition from a state is not shown, assume that
the machine transits to a permanently rejecting state (that rejecting state may
not be shown either). A state is permanently rejecting if the state is rejecting
and all transitions from this state loop back to the state.

Exercise 30

Draw a machine that accepts strings which contain the five vowels in order, and
no other vowels. So, the machine will accept “abstemious”, but not “sacrile-
gious”. See Figure 4.5. ✷

Definitions A (deterministic) finite state machine over a given alphabet has
a finite number of states, one state designated as the initial state, a subset of
states designated as accepting and a state transition function that specifies the
next state for each state and input symbol. The machine accepts or rejects every
finite string over its alphabet.

Note There is a more general kind of finite state machine called a nondeter-
ministic machine. The state transitions are not completely determined by the

78 CHAPTER 4. FINITE STATE MACHINES

start a e i o u1 2 3 4 5 6

A A A

e,i,o,u
a,e,i,u a,e,i,o

Alphabet

A = Alphabet − {a,e,i,o,u}

A A A

a,e,o,ua,i,o,u
a,e,i,o,u

Figure 4.5: Machine to check for exactly five vowels in order

current state and the input symbol as in the deterministic machines you have
seen so far. The machine is given the power of clairvoyance so that it chooses
the next state, out of a possible set of successor states, which is the “best” state
for processing the remaining unseen portion of the string. ✷

In all cases, we deal with strings —a sequence of symbols— drawn from
a fixed alphabet. A string may or may not satisfy a pattern: “abstemious”
satisfies the pattern of having all five vowels in order. Here are some more
examples of patterns.

Examples In solving these problems, D is the set of decimal digits, i.e., D =
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

1. An unsigned integer is a non-empty sequence of digits; see Figure 4.6.

start D

D

Figure 4.6: unsigned integer

2. A signed integer is an unsigned integer with a “+” or a “−” in the begin-
ning; see Figure 4.7.

3. An integer is either an unsigned or signed integer; see Figure 4.8.

4.2. FINITE STATE MACHINE 79

start +,− Unsigned
Integer

Figure 4.7: signed integer

D

D

start +, −

D

Figure 4.8: integer

4. A fractional number is an integer followed by a period followed by an
unsigned integer. Note that the following are all fractional numbers:
0.30, 0.0, 000.0,−3.2, and the following ones are not: 3, 3., .3, 3.− 2, 3.2.5.
See Figure 4.9. Here the final state of “integer” is made the starting state
of “Unsigned Integer”, and it is no longer an accepting state. The start
edge of Integer is the start edge of Fractional Number.

.Integer Unsigned Integer

Figure 4.9: Fractional Number

5. A number is either a fractional number or a fractional number followed by
the letter “E” followed by an integer. The following ones are all numbers:
3.2, −3.2, 3.2E5, 0.3E1, 3.2E + 5. The following ones are not: 3E5,
3.2E6.5. In Figure 4.10, the final accepting state of “Fractional Number”
remains accepting, and it is connected to the initial state of “Integer” with
the edge labeled with E. The start edge of Fractional Number is the start
edge of Number.

Exercise 31

Draw finite state machines that accept the strings in the following problems.

1. Any string ending in a white space. This is often called a word.

2. Any string in which “(“ and “)” are balanced, the level of parentheses
nesting is at most 3.

80 CHAPTER 4. FINITE STATE MACHINES

Fractional Number E Integer

Figure 4.10: Number

3. Any string starting with “b” followed by any number of “a”s and then a
“d”. These strings are: “bd”, “bad”, “baad”, “baaad”, . . . ✷

Exercise 32

1. Design finite state machines for the following problems. Assume that the
alphabet is {0, 1}.

(a) Accept all strings.

(b) Reject all strings.

(c) Accept if the string has an even number of 0s.

(d) Accept if the string has an odd number of 1s.

(e) Accept if the conditions in both (1c) and in (1d) apply. Can you
find a general algorithm to construct a finite state machine from two
given finite state machines, where the constructed machine accepts
only if both component machines accept? What assumptions do you
have to make about the component machines?

(f) Accept if either of the conditions in (1c) and in (1d) apply. Can you
find a general algorithm to construct a finite state machine from two
given finite state machines, where the constructed machine accepts
only if either component machine accepts? What assumptions do
you have to make about the component machines?

(g) Reject every string with an even number of 0s and odd number of 1s
(that is this machine accepts exactly those strings that the machine
in exercise (1e) rejects. Again, is there a general procedure to convert
the machine in exercise (1e) to reject all the strings it accepts and
vice-versa?

(h) Convince yourself that you cannot design a finite state machine to
accept a string that has an equal number of zeros and ones.

2. For the Wolf-Goat-Cabbage puzzle, design a suitable notation to represent
each move of the shepherd using a symbol. Then, any strategy is a string.
Design a finite state machine that accepts such a string and enters an
accepting state if the whole party crosses over to the right bank, intact,
and rejects the string otherwise.

3. For the following problems, the alphabet consists of letters (from the Ro-
man alphabet) and digits (Arabic numerals).

4.2. FINITE STATE MACHINE 81

(a) Accept if it contains a keyword, as given in Table 4.5.

(b) Accept if the string is a legal identifier : a letter followed by zero or
more symbols (a letter or digit).

4. A computer has n 32-bit words of storage. What is the number of states?
For a modern computer, n is around 225. Suppose each state transition
takes a nanosecond (10−9 second). How long will it take the machine to
go through all of its states?

5. Write a program (in C++ or Java) —without reference to finite state
machines— that outputs “accept” if the input is a string with an even
number of 0s and an odd number of 1s. Next, hand-translate the finite
state machine you have designed for this problem in an earlier exercise
into a program. Compare the two programs in terms of length, simplicity,
design time, and execution efficiency. ✷

Exercise 33

Let F be a finite state machine.

1. Design a program that accepts a description of F and constructs a Java
program J equivalent to F . That is, J accepts a string as input and prints
“accept” or “reject”. Assume that your alphabet is {0,1} , and a special
symbol, say #, terminates the input string.

2. Design a program that accepts a description of F and a string s and prints
“accept” or “reject” depending on whether F accepts or rejects s. ✷

4.2.2 Reasoning about Finite State Machines

Consider the finite state machine shown in Figure 4.11. We would like to show
that the strings accepted by the machine have an even number of 0s and an odd
number of 1s. The problem is complicated by the fact that there are loops.

0

11

0D

start A B

C

Figure 4.11: Accepts strings with even number of 0s and odd number of 1s

The strategy is to guess which string is accepted in each state, and attach
that as a label to that state. This is similar to program proving. Let

p ≡ this string has an even number of 0s,
q ≡ this string has an even number of 1s

82 CHAPTER 4. FINITE STATE MACHINES

From A to B: if p ∧ q holds for x then ¬p ∧ q holds for x0
From A to D: if p ∧ q holds for x then p ∧ ¬q holds for x1
From B to A: if ¬p ∧ q holds for x then p ∧ q holds for x0
From B to C: if ¬p ∧ q holds for x then ¬p ∧ ¬q holds for x1
From C to B: if ¬p ∧ ¬q holds for x then ¬p ∧ q holds for x1
From C to D: if ¬p ∧ ¬q holds for x then p ∧ ¬q holds for x0
From D to C: if p ∧ ¬q holds for x then ¬p ∧ ¬q holds for x0
From D to A: if p ∧ ¬q holds for x then p ∧ q holds for x1

Table 4.8: Verifications of state transitions

A plausible annotation of the machine is shown in Figure 4.12. That is, we
guess that any string for which the machine state becomes B has an odd number
of 0s and an even number of 1s; similarly for the remaining state annotations.

0

11

0D

start A B

C

p ^ q ~p ^ q

~p ^ ~q p ^ ~q

Figure 4.12: Annotation of the machine in Figure 4.11

Verification Procedure The verification procedure consists of three steps:
(1) annotate each state with a predicate over finite strings (the predicate defines
a set of strings, namely, the ones for which it is true), (2) show that the anno-
tation on the initial state holds for the empty string, and (3) for each transition
do the following verification: suppose the transition is labeled s and it is from
a state annotated with b to one with c; then, show that if b holds for any string
x, then c holds for xs.

For the machine in Figure 4.12, we have already done step (1). For step
(2), we have to show that the empty string satisfies p ∧ q, that is, the empty
string has an even number of 0s and 1s, which clearly holds. For step (3), we
have to verify all eight transitions, as shown in Table 4.8. For example, it is
straightforward to verify the transition from A to B by considering an arbitrary
string x with an even number of 0s and 1s (p ∧ q) and proving that x0 has odd
number of 0s and even number of 1s (¬p ∧ q).

Why Does the Verification Procedure Work? It seems that we are using
some sort of circular argument, but that is not so. In order to convince yourself

4.2. FINITE STATE MACHINE 83

that the argument is not circular, construct a proof using induction. The the-
orem we need to prove is as follows: after processing any string x, the machine
state is A, B, C or D iff x satisfies p∧ q, ¬p∧ q, ¬p∧¬q or p∧¬q, respectively.
The proof of this statement is by induction on the length of x.

For |x| = 0: x is an empty string and p ∧ q holds for it. The machine state
is A, so the theorem holds.

For |x| = n + 1, n ≥ 0: use the induction hypothesis and the proofs from
Table 4.8.

4.2.3 Finite State Transducers

The finite state machines we have seen so far simply accept or reject a string.
So, they are useful for doing complicated tests, such as to determine if a string
matches a given pattern. Such machines are called acceptors. Now, we will en-
hance the machine so that it also produces a string as output; such machines are
called transducers. Transducers provide powerful string processing mechanism.
Typically, acceptance or rejection of the input string is of no particular im-
portance in transducers; only the construction of the appropriate output string
matters.

Pictorially, we will depict a transition as shown in Figure 4.13. It denotes
that on reading symbol s, the machine transits from A to B and outputs string
t. The output alphabet of the machine —over which t is a string— may differ
from its input alphabet.

A B

s/t

Figure 4.13: Transition Labeling in a Finite State Transducer

Example Accept any string of 0s and 1s. Squeeze each substring of 0s to a
single 0 and similarly for the 1s. Thus,

000100110 becomes 01010

A solution is shown in Figure 4.14.

Verifications of Transducers How do we verify a transducer? We would
like to show that the output is a function, f , of the input. For the transducer
in Figure 4.14, function f is given by:

f(ǫ) = ǫ f(0) = 0 f(1) = 1
f(x00) = f(x0) f(x01) = f(x0)1
f(x10) = f(x1)0 f(x11) = f(x1)

84 CHAPTER 4. FINITE STATE MACHINES

start

0/0 1/1
0/0

1/1

0 1

Figure 4.14: Transducer that squeezes each block to a single bit

The verification strategy for finite state acceptors is augmented as follows.
As before, annotate each state by a predicate (denoting the set of strings for
which the machine enters that state). Show for the initial state that the anno-
tation is satisfied by the empty string and it outputs f(ǫ). For a transition of
the form shown in Figure 4.13, if A is annotated with p and B with q, show that
(1) if p holds for any string x, then q holds for xs, and (2) f(xs) = f(x) ++ t
(the symbol ++ denotes concatenation), i.e., the output in state B (which is
the output in state A —assumed to be f(x)— concatenated with string t) is the
desired output for any string for which this state is entered.

Exercise 34

Design a transducer which replaces each 0 by 01 and 1 by 10 in a string of 0s
and 1s. ✷

Exercise 35

The input is a 0-1 string. A 0 that is both preceded and succeeded by at least
three 1s is to be regarded as a 1. The first three symbols are to be reproduced
exactly. The example below shows an input string and its transformation; the
bit that is changed has an overline on it in the input and underline in the output.

0110111011111000111 becomes
0110111111111000111

Design a transducer for this problem and establish its correctness. ✷

Solution In Figure 4.15, the transitions pointing downward go to the initial
state. Prove correctness by associating with each state a predicate which asserts
that the string ending in that state has a certain suffix.

4.2. FINITE STATE MACHINE 85

1/11/1

1/1

1/1 0/ 1/ 1/ 1/1111

0/01100/0 0/0 0/0 0/00 0/010

Figure 4.15: Replace 0 by 1 if it is preceded and succeeded by at least three 1s

4.2.4 Serial Binary Adder

Let us build an adding circuit (adder) that receives two binary operands and
outputs their sum in binary. We will use the following numbers for illustration.

0 1 1 0 0
+ 0 1 1 1 0

————
1 1 0 1 0

The input to the adder is a sequence of bit pairs, one bit from each operand,
starting with their lowest bits. Thus the successive inputs for the given example
are: (0 0) (0 1) (1 1) (1 1) (0 0). The adder outputs the sum as a sequence of
bits, starting from the lowest bit; for this example, the output is 0 1 0 1 1. If
there is a carry out of the highest bit it is not output, because the adder cannot
be sure that it has seen all inputs. (How can we get the full sum out of this
adder?)

We can design a transducer for this problem as shown in Figure 4.16. There
are two states, the initial state is n and the carry state c; in state c, the current
sum has a carry to the next position. The transitions are easy to justify. For
instance, if the input bits are (0 1) in the n state, their sum is 0 + 1 + 0 = 1;
the last 0 in the sum represents the absence of carry in this state. Therefore, 1
is output and the machine remains in the n state. If the machine is in c state
and it receives (0 0) as input, the sum is 0 + 0 + 1 = 1; hence, it outputs 1 and
transits to the n state. For input (1 1) in the c state, the sum is 1 + 1 + 1 = 3,
which is 11 in binary; hence 1 is output and the machine remains in the c state.

00/0
01/1
10/1 11/1

10/0
01/0

00/1

11/0

n c

Figure 4.16: Serial Binary Adder

Exercise 36

86 CHAPTER 4. FINITE STATE MACHINES

Suppose that the input for either operand is terminated by a special symbol #.
Thus, a possible input could be (1, 1)(#, 0)(#, 1)(#, #), representing the sum
of 1 and 101. Redesign the serial adder to produce the complete sum.

4.2.5 Parity Generator

When a long string is transmitted over a communication channel, it is possible
for some of the symbols to get corrupted. For a binary string, bits may get
flipped, i.e., a 0 becomes a 1 and a 1 becomes a 0. There are many sophisticated
ways for the receiver to detect such errors and request retransmissions of the
relevant portions of the string. I will sketch a relatively simple technique to
achieve this.

First, the sender breaks up the string into blocks of equal length. Below the
block length is 3, and white spaces separate the blocks.

011 100 010 111

Next, the sender appends a bit at the end of each block so that each 4-bit
block has an even number of 1s. This additional bit is called a parity bit, and
each block is said to have even parity. The input string shown above becomes,
after addition of parity bits,

0110 1001 0101 1111

This string is transmitted. Suppose two bits are flipped during transmission,
as shown below; the flipped bits are underlined.

0110 1000 0101 0111

Note that the flipped bit could be a parity bit or one of the original ones.
Now each erroneous block has odd parity, and the receiver can identify all such
blocks. It then asks for retransmission of those blocks. If two bits (or any even
number) of bits of a block get flipped, the receiver cannot detect the error. In
practice, the blocks are much longer (than 3, shown here) and many additional
bits are used for error detection.

The logic at the receiver can be depicted by a finite state acceptor, see
Figure 4.17. Here, a block is accepted iff it has even parity. The receiver will
ask for retransmission of a block if it enters a reject state for that block (this is
not part of the diagram).

1

0 0

Figure 4.17: Checking the parity of a block of arbitrary length

The sender is a finite state transducer that inserts a bit after every three
input bits; see figure 4.18. The start state is 0. The states have the following

4.2. FINITE STATE MACHINE 87

meanings: in a state numbered 2i, 0 ≤ i ≤ 2, the machine has seen i bits of
input of the current block (all blocks are 3 bits long) and the current block
parity is even; in state 2i− 1, 1 ≤ i ≤ 2, the machine has seen i bits of input of
the current block and the current block parity is odd. From states 3 and 4, the
machine reads one input bit and outputs the bit read and a parity bit (1 and 0,
respectively).

0

2

4

1

3

0/0

0/0 0/0

1/1

1/1

start

1/1

0

2

4

1

3

0/0

0/0 0/0

1/1

1/1

start

1/1

0/00 0/01

1/11 1/10

Figure 4.18: Append parity bit to get even parity; block length is 3

Exercise 37
Redesign the machine of Fig 4.17 to accept only a 4-bit string.

Exercise 38
Design a machine that accepts a string of symbols, and outputs the same string
by (1) removing all white spaces in the beginning, (2) reducing all other blocks
of white spaces (consecutive white spaces) to a single white space. Thus, the
string (where - denotes a white space)

----Mary----had--a--little---lamb-

is output as
Mary-had-a-little-lamb-

Modify your design so that a trailing white space is not produced.

Exercise 39
A binary string is valid if all blocks of 0s are of even length and all blocks of
1s are of odd length. Design a machine that reads a string and outputs a Y or
N for each bit. It outputs N if the current bit ends a block (a block is ended
by a bit that differs from the bits in that block) and that block is not valid;
otherwise the output is Y . See Table 4.9 for an example. ✷

88 CHAPTER 4. FINITE STATE MACHINES

0 0 1 0 0 0 1 1 0 0 1 1 0 0 1
Y Y Y Y Y Y N Y N Y Y Y N Y Y

Table 4.9: Checking for valid blocks

4.3 Specifying Control Logic Using Finite State

Machines

4.3.1 The Game of Simon

A game that tests your memory —called Simon— was popular during the 80s.
This is an electronic device that has a number of keys. Each key lights up on
being pressed or on receiving an internal pulse.

The game is played as follows. The device lights up a random sequence of
keys; call this sequence a challenge, and the player is expected to press the same
sequence of keys. If the player’s response matches the challenge, the device
buzzes happily, otherwise sadly. Following a successful response, the device
poses a longer challenge. The challenge for which the player loses (the player’s
response differs from the challenge) is a measure of the memory capability of
the player.

We will represent the device by a finite state machine, ignoring the lights
and buzzings. Also, we simplify the problem by having 2 keys, marked 0 and
1. Suppose the challenge is a 2-bit sequence (generated randomly within the
machine). Figure 4.19 shows a finite state machine that accepts 4 bits of input
(2 from the device and 2 from the player) and enters an accepting state only if
the first two bits match the last two.

Exercise 40

The device expects the player to press the keys within 30 seconds. If no key
is pressed in this time interval, the machine transits to the initial state (and
rejects the response). Assume that 30 seconds after the last key press the device
receives the symbol p (for pulse) from an internal clock. Modify the machine in
Figure 4.19 to take care of this additional symbol. You may assume that p is
never received during the input of the first 2 bits. ✷

Remark Finite state machines are used in many applications where the pas-
sage of time or exceeding a threshold level for temperature, pressure, humidity,
carbon-monoxide, or similar analog measures, causes a state change. A sensor
converts the analog signals to digital signals which are then processed by a finite
state machine. A certain luxury car has rain sensors mounted in its windshield
that detect rain and turn on the wipers. (Be careful when you go to a car wash
with this car.) ✷

4.3. SPECIFYING CONTROL LOGIC USING FINITE STATE MACHINES89

0 1

0 1 0 1

100 1

0 1

Figure 4.19: A Simplified game of Simon

4.3.2 Soda Machine

A soda machine interacts with a user to deliver a product. The user provides
the input string to the machine by pushing certain buttons and depositing some
coins. The machine dispenses the appropriate product provided adequate money
has been deposited. Additionally, it may return some change and display warn-
ing messages.

We consider a simplified soda machine that dispenses two products, A and
B. A costs 15¢ and B 20¢. The machine accepts only nickels and dimes. It
operates according to the following rules.

1. If the user presses the appropriate button —a for A and b for B— after
depositing at least the correct amount —15¢ for A and 20¢ for B— the
machine dispenses the item and returns change, if any, in nickels.

2. If the user inserts additional coins after depositing 20¢ or more, the last
coin is returned.

3. If the user asks for an item before depositing the appropriate amount, a
warning light flashes for 2 seconds.

4. The user may cancel the transaction at any time. The deposit, if any, is
returned in nickels.

The first step in solving the problem is to decide on the input and output
alphabets. I propose the following input alphabet:

{n, d, a, b, c}.

90 CHAPTER 4. FINITE STATE MACHINES

Insertion of a nickel (resp., dime) is represented by n (resp., d), pressing the but-
tons for A (resp., B) is represented by a (resp., b), and pressing the cancellation
button is represented by c.

The output alphabet of the machine is

{n, d, A, B, w}.
Returning a nickel (resp., dime) is represented by n (resp., d). A string like nnn
represents the return of 3 nickels. Dispensing A (resp., B) is represented by A
(resp., B). Flashing the warning light is represented by w.

The machine shown in Figure 4.20 has its states named after the multiples of
5, denoting the total deposit at any point. No other deposit amount is possible,
no other number lower than 25 is divisible by 5 (a nickel’s value) and no number
higher than 25 will be accepted by the machine. (Why do we have a state 25
when the product prices do not exceed 20?) The initial state is 0. In Figure 4.20,
all transitions of the form c/nnn . . . are directed to state 0.

n n n n0 2515

b/w
a/w
b/w

c/

20

a/w
b/w

a/w b/w

dddd

n/n

a/A,nn

b/B,n

a/A,n

b/B

n/n

a/A

105

c/n
nnc/ c/nnn c/nnnn

c/nnnnn

d/d d/d

All edges labeled with c/... are directed to state 0

Figure 4.20: Soda Machine; transitions c/nnn . . . go to state 0

Exercise 41

Design a soda machine that dispenses three products costing 35¢, 55¢ and 75¢.
It operates in the same way as the machine described here. ✷

4.4 Regular Expressions

We have seen so far that a finite state machine is a convenient way of defining
certain patterns (but not all). We will study another way, regular expressions, of
defining patterns that is exactly as powerful as finite state machines: the same
set of patterns can be defined by finite state machines and regular expressions.

Suppose we want to search a file for all occurrences of simple integer, where a
simple integer is either 0 or a non-zero digit followed by any number of digits. We

4.4. REGULAR EXPRESSIONS 91

can define the pattern by a finite state machine. We can also write a definition
using a regular expression:

0 | (1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)(0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)∗

4.4.1 What is a Regular Expression?

A regular expression is like an arithmetic expression. An arithmetic expression,
such as 3 ∗ (x + 5), has operands 3, x, 5 and operators + and ∗. For a regu-
lar expression, we have an associated alphabet that plays the role of constants,
like 3 and 5. A regular expression may have operands (like x in the arithmetic
expression) that are names of other regular expressions. We have three oper-
ators: concatenation (denoted by a period or simple juxtaposition), union or
alternation (denoted by |) and closure (denoted by ∗). The first two operators
are binary infix operators like the arithmetic operators plus and times; the last
one is a unary operator, like unary minus, which is written after its operand as
a superscript. More formally, a regular expression defines a set of strings, and
it has one of the following forms:

the symbol φ, denoting an empty set of strings, or
the symbol ǫ, denoting a set with an empty string, or
a symbol of the alphabet,

denoting a set with only one string which is that symbol, or
pq, where p and q are regular expressions,

denoting a set of strings obtained by concatenation
of strings from p with those of q, or

p | q, where p and q are regular expressions,
denoting the union of the sets corresponding to p and q, or

p∗, where p is a regular expression,
denoting the closure of
(zero or more concatenations of the strings in) the set corresponding to p.

Examples of Regular Expressions Let the alphabet be {α, β, γ}.

ǫ, φ, α, β, γ
ǫα, αβ, αφ, ((ǫφ)ǫ)φ
(αβ | α((αβ)ǫ)) | (α | ǫ)
((αβ)∗(α((αβ)ǫ))∗)((α | ǫ) | αβ)∗

((α(αβ)∗ | (βα)∗β)∗αβ) | ((αγ)∗(γα)∗) ✷

Binding Power To avoid execessive number of parentheses, we impose a
precedence order (binding power) over the operators; operators in order of in-
creasing binding power are: alternation, concatenation and closure. So, αβ∗ | α∗β
is (α(β∗)) | ((α∗)β). ✷

Each regular expression stands for a set of strings.

92 CHAPTER 4. FINITE STATE MACHINES

Name Regular expression Strings
p = α | αβ | ααβ {α, αβ, ααβ}
q = β | βγ | ββγ {β, βγ, ββγ}

pq {αβ, αβγ, αββγ,
αββ, αββγ, αβββγ,
ααββ, ααββγ, ααβββγ}

p | q {α, αβ, ααβ, β, βγ, ββγ}
p∗ {ǫ,

α, αβ, ααβ,
αα, ααβ, αααβ,
αβα, αβαβ,
αβααβ, . . .}

Exercise 42

1. With the given alphabet what are the strings in ǫα, αǫ, φα, φǫ, ǫφ?

2. What is the set of strings (αβ | ααβ)(βα | ǫαβǫ)?

3. What is the set of strings (α | β)∗? ✷

Note on closure One way to think of closure is as follows:

p∗ = ǫ | p | pp | ppp | . . .

The right side is not a legal regular expression because it has an infinite num-
ber of terms in it. The purpose of closure is to make the right side a regular
expression. ✷

4.4.2 Examples of Regular Expressions

1. a | bc∗d is {a, bd, bcd, bccd, bcccd, . . .}.

2. All integers are defined by (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)∗. How would
you avoid the “empty” integer?

3. Define a simple integer to be either a 0 or a nonzero digit followed by any
number of digits:
0 | (1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)(0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)∗.
Show that 3400 is an integer, but 0034 and 00 are not.

The definition of a simple integer can be simplified by naming certain
subexpressions of the regular expression.

Digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
pDigit = 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
simple integer = 0 | (pDigit Digit∗)

4. Legal identifiers in Java. Note that a single letter is an identifier.

4.4. REGULAR EXPRESSIONS 93

Letter = A | B | . . . Z | a | b | . . . z
Digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
identifier = Letter(Letter | Digit)∗

5. Words in which all the vowels appear in order:

(Letter∗)a(Letter∗)e(Letter∗)i(Letter∗)o(Letter∗)u(Letter∗)

6. An increasing integer is a nonempty integer whose digits are strictly in-
creasing. The following regular expression definition of increasing integer
is due to Ben Finkel (class of Fall 2009).

Let us define int i, for 0 ≤ i ≤ 9, to be an increasing integer whose first
digit is greater than or equal to i. Then, an increasing integer is

IncInt = int0

To define int i, 0 ≤ i ≤ 9, it is easier to start with the highest index, 9,
and work downwards.

int9 = 9
int8 = 8 | 8 int9 | int9 = 8 | (ǫ | 8)int9
int7 = 7 | 7 int8 | int8 = 7 | (ǫ | 7)int8
int i = i | i int i+1 | int i+1 = i | (ǫ | i)int i+1, for 0 ≤ i < 9

Exercise 43

The following solution has been proposed for the increasing integer problem:
0∗1∗2∗3∗4∗5∗6∗7∗8∗9∗. What is wrong with it?

Solution The given expression generates non-decreasing strings, not just in-
creasing strings. So, 11 is generated.

The following solution almost corrects the problem; each integer is generated
at most once, but it generates the empty string. Write [i] as a shorthand for ǫ|i.

[0][1][2][3][4][5][6][7][8][9]

4.4.3 Algebraic Properties of Regular Expressions

We give some of the essential identities of the Regular Expression algebra.

1. Identity for Union (φ | R) = R, (R | φ) = R

2. Identity for Concatenation (ǫR) = R, (Rǫ) = R

3. (φR) = φ, (Rφ) = φ

4. Commutativity of Union (R | S) = (S | R)

94 CHAPTER 4. FINITE STATE MACHINES

5. Associativity of Union ((R | S) | T) = (R | (S | T))

6. Associativity of Concatenation ((RS)T) = (R(ST))

7. Distributivity of Concatenation over Union
(R(S | T)) = (RS | RT)
((S | T)R) = (SR | TR)

8. Idempotence of Union (R | R) = R

9. Closure
φ∗ = ǫ
RR∗ = R∗R
R∗ = (ǫ | RR∗)

Exercise 44

Write regular expressions for the following sets of binary strings.

1. Strings whose numerical values are even.

2. Strings whose numerical values are non-zero.

3. Strings that have at least one 0 and at most one 1.

4. Strings in which the 1s appear contiguously.

5. Strings in which every substring of 1s is of even length. ✷

Exercise 45

Define the language over the alphabet {0, 1, 2} in which consecutive symbols
are different. ✷

Exercise 46

What are the languages defined by

1. (0∗1∗)∗

2. (0∗ | 1∗)∗

3. ǫ∗

4. (0∗)∗

5. (ǫ | 0∗)∗ ✷

4.4. REGULAR EXPRESSIONS 95

4.4.4 Solving Regular Expression Equations

We find it convenient to write a long definition, such as that of IncInt in page 93,
by using a number of sub-definitions, such as int9 through int0. It is often
required to eliminate all such variables from a regular expression and get a
(long) expression in which only the symbols of the alphabet appear. We can do
it easily for a term like int8 that is defined to be 8 | (ǫ | 8)int9: replace int9

by its definition to get 8 | (ǫ | 8)9, which is (8| 9| 89). However, in many cases
the equations are recursive, so this trick will not work. For example, let p and
q be sets of binary strings that have even number of 1s and odd number of 1s,
respectively. Then,

p = 0∗ | 0∗1q
q = 0∗1p

Replace q in the definition of p to get

p = 0∗ | 0∗10∗1p

This is a recursive equation. We see that p is of the form p = 0∗ | αp
where string α does not name p (here, α = 0∗10∗1). Then p = 0∗α∗, that is,
p = 0∗(0∗10∗1)∗. Hence, q = 0∗1(0∗(0∗10∗1)∗).

A more elaborate example It is required to define a binary string that is a
multiple of 3 considered as a number. Thus, 000 and 011 are acceptable strings,
but 010 is not. Let bi, 0 ≤ i ≤ 2, be a binary string that leaves a remainder of
i after division by 3. We have:

b0 = ǫ | b00 | b11 (1)
b1 = b01 | b20 (2)
b2 = b10 | b21 (3)

These equations can be understood by answering the following questions: on
division by 3 if p leaves a remainder of i, 0 ≤ i ≤ 2, then what are the remainders
left by p0 and p1? Let value(p) denote the value of string p as an integer; then,
value(p0) = 2 × value(p) and value(p1) = 2 × value(p) + 1.

We solve these equations to create a regular expression for b0. We had noted
previously that the solution to p = ǫ | αp, where string α does not name p, is
p = α∗. We generalize this observation.

Observation: Given that p = a | αp, where strings a and α do not name p,
we have p = α∗a. Dually, given that p = a | pα, where strings a and α do not
name p, we have p = aα∗.

We prove validity of the second observation. Substitute aα∗ for p in the
equation and show that a | pα = p.

a | pα
= {replace p by aα∗}

96 CHAPTER 4. FINITE STATE MACHINES

a | aα∗α
= {apply (7) in Section 4.4.3}

a(ǫ | α∗α)
= {α∗ = ǫ | α∗α, see (9) in Section 4.4.3}

aα∗

= {replace aα∗ by p}
p ✷

Apply this observation to (3) with p, a, α set to b2, b10, 1 to get

b2 = b101∗

In the RHS of (2), replace b2 by b101∗:

b1 = b01 | b101∗0

Apply the observation on this equation with p, a, α set to b1, b01, 01∗0.

b1 = b01(01∗0)∗

Replace b1 in the RHS of (1) by the RHS above.

b0 = ǫ | b00 | b01(01∗0)∗1, or
= ǫ | b0(0 | 1(01∗0)∗1)

Apply the observation with p, a, α set to b0, ǫ, (0 | 1(01∗0)∗1).

b0 = ǫ (0 | 1(01∗0)∗1)∗, or
= (0 | 1(01∗0)∗1)∗

Exercise 47

The definition of b0 allows the empty string to be regarded as a number. Fix
the definitions so that a number is a non-empty string. Make sure that your fix
does not result in every number starting with 0.

Solution The simple fix is to modify equation (1).

b0 = 0 | b00 | b11 (1’)

But this has the effect of every number starting with 0. To avoid this problem,
modify equation (2) to include 1 as a possibility for b1. The equations now
become

b0 = 0 | b00 | b11 (1’)
b1 = 1 | b01 | b20 (2’)
b2 = b10 | b21 (3)

Solve these equations.

4.4. REGULAR EXPRESSIONS 97

4.4.5 From Regular Expressions to Machines

Regular expressions and finite state machines are equivalent: for each regular
expression R there exists a finite state machine F such that the set of strings in
R is the set of strings accepted by F . The converse also holds. I will not prove
this result, but will instead give an informal argument.

First, let us construct a machine to recognize the single symbol b. The
machine has a start state S, an accepting state F and a rejecting state G.
There is a transition from S to F labeled b, a transition from S to G labeled
with all other symbols and a transition from F to G labeled with all symbols.
The machine remains in G forever (i.e., for all symbols the machine transits
from G to G), see Figure 4.21. In this figure, Alph stands for the alphabet.

S

F
G

b

Alph

Alph

Alph − {b}

Figure 4.21: Machine that accepts b

Using our convention about permanently rejecting states, see page 77, we
will simplify Figure 4.21 to Figure 4.22.

S

F

b

Figure 4.22: Machine that accepts b, simplified

How do we construct a machine to recognize concatenation? Suppose we
have a machine that accepts a regular expression p and another machine that
accepts q. Suppose p’s machine has a single accepting state. Then we can merge
the two machines by identifying the accepting state of the first machine with the
start state of the second. We will see an example of this below. You may think
about how to generalize this construction when the first machine has several
accepting states.

Next, let us consider closure. Suppose we have to accept c∗. The machine
in Figure 4.23 does the job.

Now, let us put some of these constructions together and build a machine
to recognize bc∗. The machine is shown in Figure 4.24.

98 CHAPTER 4. FINITE STATE MACHINES

F

c

Figure 4.23: Machine that accepts c∗

start

c

b
S

F

Figure 4.24: Machine that accepts bc∗

You can see that it is a concatenation of a machine that accepts b and one
that accepts c∗. Next, let us construct a machine that accepts bc∗ | cb∗. Clearly,
we can build machines for both bc∗ and cb∗ separately. Building their union is
easy, because bc∗ and cb∗ start out with different symbols, so we can decide
which machine should scan the string, as shown in Figure 4.25.

start

c

b c

b

Figure 4.25: Machine that accepts bc∗ | cb∗

Exercise 48

Construct a machine to accept bc∗ | bd∗. ✷

4.4. REGULAR EXPRESSIONS 99

4.4.6 Regular Expressions in Practice; from GNU Emacs

The material in this section is taken from the online GNU Emacs manual1.
Regular expressions have a syntax in which a few characters are special

constructs and the rest are "ordinary". An ordinary character is a simple regular
expression which matches that same character and nothing else. The special
characters are ‘$’, ‘^’, ‘.’, ‘*’, ‘+’, ‘?’, ‘[’, ‘]’ and ‘\’. Any other character
appearing in a regular expression is ordinary, unless a ‘\’ precedes it.

For example, ‘f’ is not a special character, so it is ordinary, and therefore ‘f’
is a regular expression that matches the string ‘f’ and no other string. (It does
not match the string ‘ff’.) Likewise, ‘o’ is a regular expression that matches
only ‘o’. (When case distinctions are being ignored, these regexps also match
‘F’ and ‘O’, but we consider this a generalization of "the same string", rather
than an exception.)

Any two regular expressions A and B can be concatenated. The result is
a regular expression which matches a string if A matches some amount of the
beginning of that string and B matches the rest of the string.

As a simple example, we can concatenate the regular expressions ‘f’ and ‘o’
to get the regular expression ‘fo’, which matches only the string ‘fo’. Still trivial.
To do something nontrivial, you need to use one of the special characters. Here
is a list of them.

‘. (Period)’ is a special character that matches any single character except a
newline. Using concatenation, we can make regular expressions like ‘a.b’ which
matches any three-character string which begins with ‘a’ and ends with ‘b’.

‘*’ is not a construct by itself; it is a postfix operator, which means to match
the preceding regular expression repetitively as many times as possible. Thus,
‘o*’ matches any number of ‘o’s (including no ‘o’s).

‘*’ always applies to the *smallest* possible preceding expression. Thus,
‘fo*’ has a repeating ‘o’, not a repeating ‘fo’. It matches ‘f’, ‘fo’, ‘foo’, and so
on.

The matcher processes a ‘*’ construct by matching, immediately, as many
repetitions as can be found. Then it continues with the rest of the pattern. If
that fails, backtracking occurs, discarding some of the matches of the ‘*’-modified
construct in case that makes it possible to match the rest of the pattern. For
example, matching ‘ca*ar’ against the string ‘caaar’, the ‘a*’ first tries to match
all three ‘a’s; but the rest of the pattern is ‘ar’ and there is only ‘r’ left to match,
so this try fails. The next alternative is for ‘a*’ to match only two ‘a’s. With
this choice, the rest of the regexp matches successfully.

‘+’ is a postfix character, similar to ‘*’ except that it must match the pre-
ceding expression at least once. So, for example, ‘ca+r’ matches the strings ‘car’
and ‘caaaar’ but not the string ‘cr’, whereas ‘ca*r’ matches all three strings.

‘?’ is a postfix character, similar to ‘*’ except that it can match the preceding
expression either once or not at all. For example, ‘ca?r’ matches ‘car’ or ‘cr’;
nothing else.

1Copyright (C) 1989,1991 Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA
02139, USA

100 CHAPTER 4. FINITE STATE MACHINES

‘[...]’ is a "character set", which begins with ‘[’ and is terminated by a ‘]’.
In the simplest case, the characters between the two brackets are what this set
can match.

Thus, ‘[ad]’ matches either one ‘a’ or one ‘d’, and ‘[ad]*’ matches any string
composed of just ‘a’s and ‘d’s (including the empty string), from which it follows
that ‘c[ad]*r’ matches ‘cr’, ‘car’, ‘cdr’, ‘caddaar’, etc.

You can also include character ranges a character set, by writing two char-
acters with a ‘-’ between them. Thus, ‘[a-z]’ matches any lower-case letter.
Ranges may be intermixed freely with individual characters, as in ‘[a-z$%.]’,
which matches any lower case letter or ‘$’, ‘%’ or period.

Note that the usual special characters are not special any more inside a char-
acter set. A completely different set of special characters exists inside character
sets: ‘]’, ‘-’ and ‘^’.

To include a ‘]’ in a character set, you must make it the first character. For
example, ‘[]a]’ matches ‘]’ or ‘a’. To include a ‘-’, write ‘-’ at the beginning or
end of a range. To include ‘^’, make it other than the first character in the set.

‘[^ ...]’ ‘[^’ begins a "complemented character set", which matches any
character except the ones specified. Thus, ‘[^a-z0-9A-Z]’ matches all characters
except letters and digits.

‘^’ is not special in a character set unless it is the first character. The
character following the ‘^’ is treated as if it were first (‘-’ and ‘]’ are not special
there).

A complemented character set can match a newline, unless newline is men-
tioned as one of the characters not to match. This is in contrast to the handling
of regexps in programs such as ‘grep’.

‘^’ is a special character that matches the empty string, but only at the
beginning of a line in the text being matched. Otherwise it fails to match
anything. Thus, ‘^foo’ matches a ‘foo’ which occurs at the beginning of a line.

‘$’ is similar to ‘^’ but matches only at the end of a line. Thus, ‘xx*$’
matches a string of one ‘x’ or more at the end of a line.

‘\’ has two functions: it quotes the special characters (including ‘\’), and it
introduces additional special constructs.

Because ‘\’ quotes special characters, ‘\$’ is a regular expression which
matches only ‘$’, and ‘\[’ is a regular expression which matches only ‘[’, etc.

For the most part, ‘\’ followed by any character matches only that character.
However, there are several exceptions: two-character sequences starting with ‘\’
which have special meanings. The second character in the sequence is always
an ordinary character on their own. Here is a table of ‘\’ constructs.

‘\|’ specifies an alternative. Two regular expressions A and B with ‘\|’ in
between form an expression that matches anything that either A or B matches.

Thus, ‘foo\|bar’ matches either ‘foo’ or ‘bar’ but no other string.

‘\|’ applies to the largest possible surrounding expressions. Only a sur-
rounding ‘\(... \)’ grouping can limit the scope of ‘\|’.

Full backtracking capability exists to handle multiple uses of ‘\|’.

‘\(... \)’ is a grouping construct that serves three purposes:

4.4. REGULAR EXPRESSIONS 101

1. To enclose a set of ‘\|’ alternatives for other operations. Thus, ‘\(foo\|bar\)x’
matches either ‘foox’ or ‘barx’.

2. To enclose a complicated expression for the postfix operators ‘*’, ‘+’ and
‘?’ to operate on. Thus, ‘ba\(na\)*’ matches ‘bananana’, etc., with any (zero
or more) number of ‘na’ strings.

3. To mark a matched substring for future reference.

This last application is not a consequence of the idea of a parenthetical
grouping; it is a separate feature which is assigned as a second meaning to the
same ‘\(... \)’ construct. In practice there is no conflict between the two
meanings. Here is an explanation of this feature:

‘\D’ after the end of a ‘\(... \)’ construct, the matcher remembers the
beginning and end of the text matched by that construct. Then, later on in the
regular expression, you can use ‘\’ followed by the digit D to mean "match the
same text matched the Dth time by the ‘\(... \)’ construct."

The strings matching the first nine ‘\(... \)’ constructs appearing in a
regular expression are assigned numbers 1 through 9 in order that the open-
parentheses appear in the regular expression. ‘\1’ through ‘\9’ refer to the text
previously matched by the corresponding ‘\(... \)’ construct.

For example, ‘\(.*\)\1’ matches any newline-free string that is composed
of two identical halves. The ‘\(.*\)’ matches the first half, which may be
anything, but the ‘\1’ that follows must match the same exact text.

If a particular ‘\(... \)’ construct matches more than once (which can
easily happen if it is followed by ‘*’), only the last match is recorded.

‘\`’ matches the empty string, provided it is at the beginning of the buffer.

‘\'’ matches the empty string, provided it is at the end of the buffer.

‘\b’ matches the empty string, provided it is at the beginning or end of
a word. Thus, ‘\bfoo\b’ matches any occurrence of ‘foo’ as a separate word.
‘\bballs?\b’ matches ‘ball’ or ‘balls’ as a separate word.

`\B’ matches the empty string, provided it is *not* at the beginning or end
of a word.

‘\<’ matches the empty string, provided it is at the beginning of a word.

‘\>’ matches the empty string, provided it is at the end of a word.

‘\w’ matches any word-constituent character. The syntax table determines
which characters these are.

‘\W’ matches any character that is not a word-constituent.

‘\sC’ matches any character whose syntax is C. Here C is a character which
represents a syntax code: thus, ‘w’ for word constituent, ‘(’ for open-parenthesis,
etc. Represent a character of whitespace (which can be a newline) by either ‘-’
or a space character.

‘\SC’ matches any character whose syntax is not C.

The constructs that pertain to words and syntax are controlled by the setting
of the syntax table.

Here is a complicated regexp, used by Emacs to recognize the end of a
sentence together with any whitespace that follows. It is given in Lisp syntax to
enable you to distinguish the spaces from the tab characters. In Lisp syntax, the

102 CHAPTER 4. FINITE STATE MACHINES

string constant begins and ends with a double-quote. ‘\"’ stands for a double-
quote as part of the regexp, ‘\\’ for a backslash as part of the regexp, ‘\t’ for
a tab and ‘\n’ for a newline.

"[.?!][]\"')]*\\($\\|\t\\| \\)[\t\n]*"

This contains four parts in succession: a character set matching period, ‘?’,
or ‘!’; a character set matching close-brackets, quotes, or parentheses, repeated
any number of times; an alternative in backslash-parentheses that matches end-
of-line, a tab, or two spaces; and a character set matching whitespace characters,
repeated any number of times.

To enter the same regexp interactively, you would type TAB to enter a
tab, and ‘C-q C-j’ to enter a newline. You would also type single slashes as
themselves, instead of doubling them for Lisp syntax.

4.5 Enhancements to Finite State Machines

Finite state machines may be enhanced —by adding structures to states and
transitions— which make them effective in specifying a variety of hardware and
software systems. They are particularly effective in specifying control systems.
We will study a few enhancements in this section. Much of this material is
inspired by Statecharts [20], introduced by David Harel in the mid 80s. State-
charts have been very influential in software specifications and designs, and they
have inspired modeling systems such as UML [17]. We will cover a very small
subset of the theory of statecharts, and adopt different notations, terminology
and semantics.

Consider the finite state machine shown in Figure 4.26 (which is same as
Figure 4.11 of Section 4.2.2, page 81). It accepts a string which has even number
of 0s and odd number of 1s. The machine can be described more succinctly by
employing two boolean variables, zero and one, which convey the parity of the
number of zeroes and ones in the string. We can then express the logic using
the machine in Figure 4.27.

0

11

0D

start A B

C

Figure 4.26: Accept strings with even number of 0s and odd number of 1s

In Figure 4.27, each transition has the form x → S, where x is a symbol,
0 or 1, and S is an assignment to a variable (Unfortunately, I have to use
~zero in the figure, instead of ¬zero, due to limitations of available fonts).
The initial state has an associated transition that assigns the initial values of

4.5. ENHANCEMENTS TO FINITE STATE MACHINES 103

1 −−> one := ~one

zero := true
one := true

0 −−> zero := ~zero

Figure 4.27: Count parity of 0s and 1s

the variables. There is no explicit accepting state; we have to specify that the
string is accepted if zero ∧ ¬one holds. As this example shows, we carry part
of the state information in the variables.

Finite state machines embody both control and data. Using variables to en-
code data leaves us with the problem of encoding control alone, often a simpler
task. In this section, we develop the notations and conventions for manipulat-
ing variable values. Additionally, we describe how a state may have internal
structure; a state can itself be a finite state machine.

Note: We had earlier used the notation s/t in finite state transducers (see
Section 4.2.3) to denote that on reading symbol s, the machine makes a state
transition and outputs string t. We now employ a slightly different notation,
replacing “/” by “ → ”, which is a more common notation in software design.

Convention If no transition is specified out of state s for some condition c,
then the machine remains in state s if c holds.

4.5.1 Adding Structures to Transitions

As we have remarked earlier, the state in a finite state machine is an aggregate
of control and data states. It is not always clear what constitutes control and
what is data, but it is often possible to reduce the size of a machine (the size is
the number of states) by using variables. The previous example, of recognizing
a string with even number of 0s and odd number of 1s, showed a small reduction
in size. We motivate the technique with a more realistic example.

An identifier in some programming language is defined to be a string over
letters and digits whose first symbol is a letter and length is at most 6. Using
L for the set of letters and LD for letters and digits, the machine shown in
Figure 4.28 enters an accepting state only for a valid identifier.

The number of states in the machine is related (linearly) to the maximum
length of the identifier. If an identifier is allowed to have length m, there will
be m + 2 states in the machine, greatly obscuring its intent. In Java, identifiers
may be as long as 216 − 1.

104 CHAPTER 4. FINITE STATE MACHINES

L LD LD LD LD LD LD

Figure 4.28: Accept valid identifiers

In Figure 4.29, we use variable n for the length of the identifier seen so far.
The size of the machine is 3, independent of the length of identifiers.

L −−> n:= 1

LD, n < 6 −−> n:= n+1

LD, n = 6

Figure 4.29: Accept valid identifiers, using variables

In this figure, we have introduced several ideas. First, there is variable n
and assignment to it. Second, our transitions are more elaborate. The left side
of the → is called guard. The guard may have up to two parts, one for the
symbol (such as LD) and the other to specify a condition (written as a predicate
over the variables introduced). Thus LD, n < 6 → n := n + 1 has guard
LD, n < 6, whose symbol part is LD and predicate part is n < 6. The right
side of → , called the command, is a program that manipulates the variables.
Typically, we have a few assignment statements in the command part, though
statecharts [20] allow arbitrary programs. The left or the right side of the →

may be absent.

A transition takes place only if the guard is satisfied; i.e., the corresponding
symbol is present in the input and the variable values satisfy the given predicate.
A transition is accompanied by execution of the command part.

Introducing variables that can take on unbounded values (such as integer-
valued variables) takes us out of the domain of finite state machines. We can
solve problems that no finite state machine can, such as counting the number of
zeroes in a string. Only the control aspect is embodied as a finite state machine.

4.5.2 Examples of Structured Transitions

4.5.2.1 Balanced Parentheses

Accept a string consisting of left and right parentheses, “(” and “)”, only if it is
completely balanced, as in (), (()) and ()(()). This problem can be solved using
classical finite state machines only if there is a bound on the depth of nesting
of the parentheses; we used depth 3 in an earlier example. The introduction of
variables makes it possible to solve the general problem, though the resulting
solution can not be translated to a classical finite state machine. In Figure 4.30,
n is the number of unmatched “(” in the string seen so far. A string is accepted

4.5. ENHANCEMENTS TO FINITE STATE MACHINES 105

iff n = 0 and the state is A. A transition with “else” guard is taken if no other
guard is satisfied.

n:= 0

(−−> n:= n+1

A

), n > 0 −−> n:= n−1

Relse

Figure 4.30: Accept balanced parentheses

A Variation Same as above but the string contains parentheses and brackets,
“[” and “]”, and they have to be balanced in the customary manner (as in an
arithmetic expression). String ()[(())] is balanced whereas ([)] is not. Merely
counting for each type of bracket is insufficient, because ([)] will then be ac-
cepted.

st:= <>
A

[−−> push(st,"[")

], top(st) = "[" −−> pop(st)
), top(st) = "(" −−> pop(st)

(−−> push(st,"(")

Relse

Figure 4.31: Accept balanced parentheses and brackets

In Figure 4.31, we use variable st which is a stack of unmatched symbols;
the input string is accepted iff the state is A and st is empty (denoted by <>
in the figure). We use push to push a symbol on the top of the stack, pop to
remove the top symbol of a non- empty stack, and top to get the value of the
top symbol.

4.5.2.2 Simple arithmetic Expression

Consider arithmetic expressions of the form a × b × c + d × e + · · ·, where
a, b, c, d, e are constants, the only operators are + and × which alternate

106 CHAPTER 4. FINITE STATE MACHINES

with the constants, and there are no parentheses. Consider only non-empty
expressions ended by the special symbol #. In Figure 4.32 we show a classical
finite state machine that accepts such strings; here a denotes the next input
constant. Observe that if the symbols + or × are seen in the initial state, the
string is rejected.

a

+

#

X

Figure 4.32: Accepts simple arithmetic expression

Next, we enhance the machine of Figure 4.32 in Figure 4.33 to compute the
value of the arithmetic expression. For example, the machine will accept the
string 3×2+4×1×2# and output 14. The machine that outputs the expression
value is shown in Figure 4.33. There are two integer variables, s and p. Variable
p holds the value of the current term and s the value of the expression excluding
the current term. Thus, for 3×2+4×1×2#, after we have scanned 3×2+4×,
values of p and s are 4 and 3×2 = 6, respectively. The transition marked with ×
denotes that the guard is × and the command part is empty (sometimes called
skip).

s,p:= 0,1

+ −−> s,p:= s+p,1

−−> print(s+p)a −−> p:= pa

X

Figure 4.33: Computes value of simple arithmetic expression

A Variation We consider more general arithmetic expressions which are of
the same form as described above, but also include parentheses; an example is
3+(4×(2×6+8)×3)+7. These are close to being general arithmetic expressions
in typical programming languages, the only exclusions being subtraction and
division operators (which could be added very simply). Our goal, as before, is
to design a machine that accepts a valid expression ended with the symbol # and
print the value of the expression. We will combine ideas from several machines
developed so far. In particular, we will enhance the machine of Figure 4.33 to

4.5. ENHANCEMENTS TO FINITE STATE MACHINES 107

handle parentheses, and we handle parentheses using the machine of Figure 4.30,
though we have to store partially computed values in a stack, as in Figure 4.31.

The outline of the scheme is as follows. We start evaluating an expression
like 3+(4×(2×6+8)×3)+7 as before, setting s, p = 3, 1 after scanning 3+. Then
on scanning “(”, we save the pair 〈s, p〉 on stack st, and start evaluating the
expression within parentheses as a fresh expression, i.e., by setting s, p := 0, 1.
Again, on encountering “(”, we save s, p = 0, 4 on the stack, and start evaluating
the inner parenthesized expression starting with s, p := 0, 1. On scanning “)”,
we know that evaluation of some parenthesized expression is complete, the value
of the expression is a = s + p and we should resume computation of its outer
expression as if we have seen the constant a. We retrieve the top pair of values
from the stack, assign them to s and p, and simulate the transition that handles
a constant, i.e., we set p := p × a. We store the length of the stack in n,
incrementing it on encountering a “(” and decrementing it for a “)”. A “)” is
accepted only when n > 0 and “#” when n = 0.

+ −−> s,p:= s+p,1

a −−> p:= pas,p,n:= 0,1,0
st := <>

(−−>

#, n=0 −−> print(s+p)

), n>0 −−> βα

X

Figure 4.34: Computes value of arithmetic expression

Here, α and β are the following program fragments.

α : push(st, 〈s, p〉); s, p := 0, 1; n := n + 1
β : a := s + p; pop(st, 〈s, p〉); p := p × a; n := n − 1

Exercise 49

Run the machine of Figure 4.34 on input string 3+(4× (2×6+8)×3)+7# and
show the values of the variables (including contents of the stack) at each step.
Choose several strings that are syntactically incorrect, and run the machine on
each of them.

Exercise 50

(Research) Would it be simpler to specify the machine in Figure 4.34 if we could
call a machine recursively? Explore the possibility of adding recursion to finite
state machines.

108 CHAPTER 4. FINITE STATE MACHINES

4.5.2.3 Event-based Programming

Enhanced finite state machines are often used to specify and design event-based
systems. An event happens in the external world and the machine has to react
to the event. Consider the dome light in a car that is either “on” or “off”.
Initially, the light is off. The light comes on if a switch is pressed (denote the
switch press by event sw) or if the door is opened (denote by door). The light
goes off if the switch is pressed again (i.e., event sw), the door is closed (denote
by door′) or 5 minutes elapse with the light being on (denote this time-out event
by tmout).

The example just described denotes an elementary event-based system. The
events are sw, door, door′, and tmout. The designer has no control over if or
when the events happen (the time out event is special; it is guaranteed to happen
at the designated time). He has to design a system that enters the correct state
and carries out the appropriate actions when an event happens. The event
may be likened to the occurrence of a symbol. Therefore, we treat each event
as a symbol and use the diagrams as before to depict the state transitions.
Figure 4.35 shows a possible specification of the dome light problem. Here, we
have taken the liberty of writing compound events as boolean combinations of
simpler events. Boolean connectives ∧ and ∨ have the expected meanings, ¬
is problematic and should be avoided. The notions of accepting and rejecting
states are irrelevant for specifications of event based systems.

off on

door’ v sw v tmout

door v sw

Figure 4.35: Control the dome light in a car

Our treatment of this example is inadequate. Suppose that the switch is
pressed to turn on the dome light, the door is then opened and closed. We
would expect the dome light to stay on. But our machine would enter the off
state. Proper development of this example is left as an exercise in page 113.

4.5.3 Adding Structures to States

The classical theory of finite state machines treats a state as an indivisible unit,
devoid of any structure. In this section, we show that we can often simplify a
design by treating a set of states as a single state at a higher level of design,
and exploiting the internal structure of this structured state at a lower level.

For motivation, consider fractional number as defined in Page 79. A frac-
tional number is an integer followed by a period followed by an unsigned integer.

4.5. ENHANCEMENTS TO FINITE STATE MACHINES 109

An acceptor of fractional numbers can be structured as in Figure 4.9 (Page 79),
which may be thought of as having just 2 states: state I to accept an integer
and state U to accept an unsigned integer, the transition from I to U is made
on detecting a period. Next, we treat I and U as being finite state machines
themselves. If the machine is in I, it is also in one of the substates of I.

4.5.3.1 Structured state

A structured state s consists of a set of states, and s is either an or-state or an
and-state. If the machine is in an or-state s, it is also in one of the component
states of s. If the machine is in an and -state s, it is also in all of the component
states of s. The component states of s may themselves be structured states.
A typical finite state machine can be regarded as a single or-state, because the
machine is in one of the component states.

The hierarchy of states induces a tree structure on the states of the machine.
The root corresponds to the whole machine, its component states are its chil-
dren, and each non-leaf state is either an and-state or an or-state. We show
an example of such a machine diagrammatically in Figure 4.36. Here the root
state is an and-state, designated by a triangle, which consists of two component
states. Each component is an or-state consisting of two component states. We
have used boolean logical connectives to show the structure of non-leaf states.

(a v b) ^ (c v d)

a v b

a b c d

c v d

Figure 4.36: A Finite State Machine with tree structure over states

In Figure 4.36, the machine could be in states a and c simultaneously, or in
b and d. In fact, we can enumerate all possible state compositions by taking
the boolean formula that describes the root and writing it in disjunctive normal
form. For the machine in Figure 4.36, the root is (a∨ b)∧ (c∨d), which is same
as (a ∧ c) ∨ (b ∧ c) ∨ (a ∧ d) ∨ (b ∧ d). The machine state could be given by any
one of the disjuncts.

Exercise 51

Consider a machine whose root is labeled (a ∨ b) ∧ (c ∧ d) ∨ h ∨ (g ∨ (e ∧ f)).
Draw the tree corresponding to this machine and enumerate all possible state
combinations in which the machine could be at any time.

110 CHAPTER 4. FINITE STATE MACHINES

4.5.3.2 Diagrams of Structured Finite State Machines

We adopt a small number of conventions to depict structured finite state ma-
chines. An or-state is denoted by a region (circle or square) which contains all
its component states. An and-state is similarly denoted, but the components
are additionally separated by dotted lines; see Figure 4.37.

or−state (b) and−state(a)

Figure 4.37: Diagram Conventions for Structured States

We apply these conventions to depict a machine in Figure 4.38 whose struc-
ture is given in Figure 4.36. Since the over-all machine is an and-state, there is
an initial state for each component; we have chosen a and c for initial states in
this example.

The transitions in Figure 4.38 are among the leaf nodes within a compo-
nent. In practice, the transitions often cross state boundaries; there may be a
transition from a to d, for example. The given machine starts in states a and
c, makes transitions within the left component when a 0 is detected and within
the right component for 1. The accepting state is (a, d). This machine accepts
strings with even number of 0s and odd 1s. We have built the machine from two
independent machines, one to keep track of the parity of 0s and the other for
1s. The two machines are similar and the overall machine is a composition of
these two machines. Here, the treatment of each symbol, 0 and 1, is neatly dele-
gated to a single component. Contrast this machine with the one in Figure 4.26
(page 102) for the same problem.

0 1

b

c

d

a

Figure 4.38: A Structured Machine, (a ∨ b) ∧ (c ∨ d)

Since a machine may be in several leaf states simultaneously, several transi-
tions may possibly occur at any moment. The general rule for transition is as
follows: on detecting a symbol, all transitions from the given states are under-

4.5. ENHANCEMENTS TO FINITE STATE MACHINES 111

taken together. In Figure 4.38, each symbol occurs in exactly one component;
so, there is never a simultaneous transition. We describe an example next, where
the general transition rule is applied.

Consider opening a car door. This action has effects on several parts of the
system. The dome light comes on, if the car is moving then a “door open” light
comes on, if the headlights are on then warning chime sounds and if the key is
in the ignition, a message is displayed in the dashboard. We can describe all
these effects by having an and-state that includes each part —dome light, “door
open” light, chime and dashboard— as a component. The event of opening a
door causes simultaneous transitions in each component.

Semantics We have been very lax about specifying the behaviors of enhanced
finite state machines. Unlike a classical machine where the moment of a transi-
tion (“when” the transition happens after a symbol is received) and its duration
(“how long” it takes for the transition to complete) are irrelevant, enhanced ma-
chines have to take such factors into account. It will not do to say that the light
comes on in response to a switch press after an arbitrary delay, if we have to
consider time-out in the design.

A transition takes place instantaneously as soon its guard holds, and if sev-
eral guards hold simultaneously for transitions from a single state, any one of
these transitions may fire. Observe that transitions from different states may
fire simultaneously if their guards hold. We assume that it takes no time at all
to evaluate the guard or execute the command part.

There is no guarantee that a transition t will be executed at all if its guard
holds, because another transition may fire and falsify the predicate in the guard
of t. As an example, consider two machines that share a printer. Each machine
may print if it is ready to print and the printer is free. Therefore, potentially
two transitions are ready to fire at some moment. But as soon as one transi-
tion succeeds, i.e., starts printing, the printer is no longer free and the other
machine’s transition may not fire immediately, or ever. Semantics of concurrent
behavior go beyond the scope of this course.

4.5.4 Examples of Structured States

Convention Henceforth, we omit the surrounding region for a structured
state when there is no ambiguity. Figure 4.39 shows the same machine as in
Figure 4.38.

4.5.4.1 Desk Fan

A desk fan has three switches: (1) a “power” switch to turn the fan off and on,
(2) a “speed” switch that toggles the fan speed between levels 1 and 2, and (3)
a “rotate” switch that causes the fan head to rotate or remain stationary. We
describe the behavior of the fan in Figure 4.40. In Figure 4.40(a), the overall
design of the fan is shown, which describes the function of the power switch.
In Figure 4.40(b), the structure of “on” state is elaborated as an or-state. In

112 CHAPTER 4. FINITE STATE MACHINES

0 1

a

b

c

d

Figure 4.39: Redrawing the machine in Figure 4.38

Figure 4.40(c), a different design for “on” state is shown; it is an and-state. The
design in Figure 4.40(c) is more modular; it clearly shows that speed and rotate
switches control different aspects of the fan.

power

speed

speed

rotate

s, 1 s,2

r, 1 r, 2

(b)

off

on

rotate rotate

s

2 r

(c)(a)

1

speed

Figure 4.40: A fan with 2 speeds and rotate action

Next, we consider a design modification. Suppose we wish to allow three
speed levels. The modification of Figure 4.40(b) is extensive. But, the modifi-
cations in Figure 4.40(c) can be made only in the left component, as shown in
Figure 4.41; the right component is unaffected.

Next, suppose we wish to add a heater to the fan, which is controlled by a
separate “heat” switch. The heater is either off or on and the heat switch toggles
the state. Initially the heater is off. We simply add another component to “on”
state. We show the entire fan, with 3 speed and the heater in Figure 4.42.

Preventing Certain Transitions An and-state, as shown in Figure 4.42 for
example, allows all combinations of possible states of the components. Quite
often, certain combinations are undesirable. For example, we my wish to prevent
the fan from running at the highest speed (speed 3) while the heat is on. We
accomplish this by preventing the transition from speed 2 to speed 3 if the heat
is on (i.e., the state is h-on), and from h-off to h-on while the speed is at 3. For
state s (leaf or non-leaf), write in(s) as a predicate to denote that the machine
is in state s. We use such predicates in the guards of the transitions to prevent

4.5. ENHANCEMENTS TO FINITE STATE MACHINES 113

2

1

speed

3

rotate

s

r

speed

speed

on

Figure 4.41: Modification of Figure 4.40(c) to allow 3 speeds in the fan

2

1

speed

3

rotate

s

r

off

on

power

h−on

heat

speed

speed

h−off

Figure 4.42: Modifications with 3 speeds and heater in the fan

certain transitions. A modified version of Figure 4.42 appears in Figure 4.43
which implements these constraints.

Observe that for and-state x whose component states are set S

y ∈ S ∧ in(y) ⇒ in(x) ∧ (∀z : z ∈ S : in(z))

Similarly, for or-state x whose component states are set S

y ∈ S ∧ in(y) ⇒ in(x) ∧ (∀z : z ∈ S ∧ z 6= y : ¬in(z))

Exercise 52

Reconsider the problem of the dome light from Section 4.5.2.3 in page 108. The
car state is given by three components: the switch (the state is off or on), the
door (shut or ajar) and the dome light’s state (off or on). There are two possible
events that can affect the state: (1) opening or closing the door (use event door

114 CHAPTER 4. FINITE STATE MACHINES

2

1

3

rotate

s

r

off

on

power

h−on

heat

speed

speed,
~in(h−on)

speed heat,
~in(3)

h−off

Figure 4.43: Restricting certain state transitions

to toggle between shut and ajar; that is, door′ is same as door), and (2) flipping
the switch (event sw). Flipping the switch has a simple effect on the switch
state, toggling it between off and on. However, the effect on the light state is
more elaborate. If the door is shut, flipping the switch toggles the light state
between off and on. If the door is ajar, the switch event has no effect. Similarly,
if the switch is on then the light is on irrespective of the state of the door. First,
describe the system using a simple finite state machine. Next, describe it using
three components, for the switch, door and light.

4.5.4.2 Keeping Score in a Tennis Game

A tennis game involves two players, a server and a receiver. At any moment
in a game, the score is a pair (sp, rp), where sp is the server’s score and rp
the receiver’s. A score, sp or rp, is one of {0, 15, 30, 40} (don’t ask me how
they came up with these numbers). Thus, typical scores during a game may be
(0, 0), (40, 15) and (40, 40). Initial score is (0, 0).

Each point in the game is won by the server or the receiver. Winning a point
increases the score of the corresponding player (from 30 to 40, for example). A
player wins a game if the his/her score is 40, the opponent’s score is below 40
and the player wins the point. If both scores are 40, a player wins the game
by winning the next two points; if the next two points are not won by a single
player — the server wins a point and the receiver wins the other — the score
reverts back to (40, 40).

First, we show a simple finite state machine for score keeping. The score
keeping machine at a game probably employs the same finite state machine.
In Figure 4.44, we have a matrix of states, where a score (sp, rp) is a matrix
element. There are two states outside the matrix denoting a win by a differ-
ent player, gs for “game to server”, and, dually, gr. Each row of the matrix
corresponds to a fixed score by the server and the column for the receiver. A

4.5. ENHANCEMENTS TO FINITE STATE MACHINES 115

point won by the receiver causes a transition to the right neighbor along a row
(provided there is a right neighbor); similarly a point won by the server causes
transition downward in a column (provided there is a neighbor below). For the
rightmost column, a receiver’s point causes him/her to win the game provided
the server’s score is below 40; similarly, for the server.

The remaining question is to model the behavior at (40, 40). Here, we
do a simple analysis to conclude that a winning point by the receiver merely
decreases the score of the server, so that the score becomes (30, 40); dually, if
the server wins the point the score becomes (40, 30).

0

15

30

40

0 15 30 40

gs

gr

server

receiver

r

s

r
r
r

s s s

Figure 4.44: Scoring in a tennis game. s/r are points won by server/receiver.

Representation with Structured Transitions We can represent the ma-
chine more succinctly by using structured transitions. The transitions in Fig-
ure 4.45 are labeled with the statement numbers from the following program
fragment.

We employ two variables, sp and rp for the scores of the server and receiver,
respectively. Below, sp′ is the next value higher than sp (i.e., if sp = 30 then
sp′ = 40); similarly, rp′. Variable s represents a point won by the server, and,
similarly, r is a point won by the receiver. Thus, statement 0 represents the
transition to the initial state where both player scores are 0, and 3 represents
the transition from a deuce state where the server wins the point.

0: sp, rp := 0, 0
1: s, sp < 40 → sp := sp′

2: r, rp < 40 → rp := rp′

3: s, sp = 40 ∧ rp = 40 → rp := 30
4: r, sp = 40 ∧ rp = 40 → sp := 30
5: s, sp = 40 ∧ rp < 40 → gs := true
6: r, sp < 40 ∧ rp = 40 → gr := true

116 CHAPTER 4. FINITE STATE MACHINES

gs gr

0
1,2

3,4

5 6

Figure 4.45: Scoring in a tennis game, using structured transitions

Representation with Structured States The state of the machine is a
tuple; therefore, we can decompose the state into two components, and treat
changes to each component by a separate machine. Such a design is shown in
Figure 4.46. Variables rp and sp refer to the states of the receiver and server.
Observe the transitions when the score is (40, 40).

r r r r, sp<40

s, sp =40

0 15 30 40 gr

0 15 30 40 gs

s s s s, rp<40
r; rp =40

receiver

server

Figure 4.46: Scoring in a tennis game, using structured states

Representation with Structured Transitions and States We combine
the ideas of Figures 4.45 and 4.46 to get Figure 4.47.

4.5. ENHANCEMENTS TO FINITE STATE MACHINES 117

sp <40
gr

r, rp < 40 −−> rp := rp’

s, sp =40 ^ rp < 40

r, sp = 40 ^ rp =40 −−> sp := 30

s, sp < 40 −−> sp := sp’

rp := 0 sp := 0

s, rp = 40 ^ sp =40 −−> rp := 30

r, rp=40 ^
gs

Figure 4.47: Scoring in a tennis game, using structured transitions and states

